Volume 1, Issue 3 (9-2023)                   JPSAD 2023, 1(3): 51-58 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motamedi Nasab S I, Pourbakhsh S A, Haghbin Nazarpak H. Evaluation of inactivated vaccine's Antibody response to different H9N2 Vaccination programs with Hemagglutination Inhibition (HI) assay. JPSAD 2023; 1 (3) :51-58
URL: http://jpsad.ir/article-1-60-en.html
1- Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
2- Department of Avian Diseases, Razi Vaccine and Serum Institute, Tehran, Iran
3- Department of Avian Diseases, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Abstract:   (163 Views)
Influenza is a significant poultry disease that can also affect humans, making it a zoonosis. The World Health Organization (WHO) and Contagious Diseases Organization (CDO) have increasingly focused on this disease in recent years. The isolation of influenza, particularly H5N1 and H9N2 subtypes, has dramatically increased, posing a global epidemic threat and causing deaths in various communities, as well as substantial losses in poultry. In response, using inactivated avian influenza vaccines has become common in controlling the disease. A comprehensive study was conducted in broiler farms in Iran to address the importance of influenza control through vaccination. The study involved 50,000 broiler chicks divided into seven groups with different vaccination programs. The groups were vaccinated at different ages and received varying vaccine doses. Serum samples were collected weekly and analyzed for antibody titers using hemagglutination inhibition (HI). The results showed that the groups vaccinated after seven days of age had a more consistent immune response and higher antibody titers than those vaccinated at a younger age or with only one dose. Early vaccination before seven days of age did not effectively stimulate the desired antibody response or achieve expected titers for the H9N2 influenza virus. Therefore, vaccinating older chicks improved immunity and flock protection more effectively.
This study highlights the importance of vaccination strategies in controlling influenza in broiler farms. It provides valuable insights into the optimal timing and dosage of vaccines to enhance the immune response and protect against the H9N2 subtype. Implementing appropriate vaccination programs can contribute to mitigating the impact of influenza on poultry and reducing the risk of transmission to humans, ultimately safeguarding both animal and public health.
 
Full-Text [PDF 315 kb]   (73 Downloads)    

Type of Study: Original Paper | Subject: Avian Diseases
Received: 2023/12/9 | Accepted: 2023/12/9 | Published: 2023/12/9

References
1. Nagy A, Mettenleiter T, Abdelwhab E. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiology & Infection. 2017;145(16):3320-33. [DOI:10.1017/S0950268817002576] [PMID] []
2. Talat S, Abouelmaatti RR, Almeer R, Abdel-Daim MM, Elfeil WK. Comparison of the effectiveness of two different vaccination regimes for avian influenza H9N2 in broiler chicken. Animals. 2020;10(10):1875. [DOI:10.3390/ani10101875] [PMID] []
3. Bano S, Naeem K, Malik S. Evaluation of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian diseases. 2003;47(s3):817-22. [DOI:10.1637/0005-2086-47.s3.817] [PMID]
4. Dong J, Zhou Y, Pu J, Liu L. Status and challenges for vaccination against avian H9N2 influenza virus in China. Life. 2022;12(9):1326. [DOI:10.3390/life12091326] [PMID] []
5. Lee D-H, Song C-S. H9N2 avian influenza virus in Korea: evolution and vaccination. Clinical and experimental vaccine research. 2013;2(1):26-33. [DOI:10.7774/cevr.2013.2.1.26] [PMID] []
6. Pusch EA, Suarez DL. The multifaceted zoonotic risk of H9N2 avian influenza. Veterinary sciences. 2018;5(4):82. [DOI:10.3390/vetsci5040082] [PMID] []
7. Lee D-h, Fusaro A, Song C-S, Suarez DL, Swayne DE. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea. Virology. 2016;488:225-31. [DOI:10.1016/j.virol.2015.11.023] [PMID]
8. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiological reviews. 1992;56(1):152-79. [DOI:10.1128/mr.56.1.152-179.1992] [PMID] []
9. Li C, Yu K, Tian G, Yu D, Liu L, Jing B, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology. 2005;340(1):70-83. [DOI:10.1016/j.virol.2005.06.025] [PMID]
10. Umar S, Sarfraz S, Mushtaq A, Attique M. Emerging threat of H9N2 viruses in poultry of Pakistan and vaccination strategy. World's Poultry Science Journal. 2016;72(2):343-52. [DOI:10.1017/S0043933916000179]
11. Samy A, Naguib MM. Avian respiratory coinfection and impact on avian influenza pathogenicity in domestic poultry: field and experimental findings. Veterinary sciences. 2018;5(1):23. [DOI:10.3390/vetsci5010023] [PMID] []
12. Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, et al. Emerging threats and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Research. 2022;11. [DOI:10.12688/f1000research.118669.2] [PMID] []
13. Arafat N, Eladl AH, Marghani BH, Saif MA, El-Shafei RA. Enhanced infection of avian influenza virus H9N2 with infectious laryngeotracheitis vaccination in chickens. Veterinary microbiology. 2018;219:8-16. [DOI:10.1016/j.vetmic.2018.04.009] [PMID]
14. El Khantour A, El Houadfi M, Nassik S, Tligui NS, El Mellouli F, Sikht F-Z, et al. Protective efficacy evaluation of four inactivated commercial vaccines against low pathogenic avian influenza H9N2 virus under experimental conditions in broiler chickens. Avian Diseases. 2021;65(3):351-7. [DOI:10.1637/aviandiseases-D-21-00015] [PMID]
15. Harder T, de Wit S, Gonzales JL, Ho JH, Mulatti P, Prajitno TY, Stegeman A. Epidemiology-driven approaches to surveillance in HPAI-vaccinated poultry flocks aiming to demonstrate freedom from circulating HPAIV. Biologicals. 2023;83:101694. [DOI:10.1016/j.biologicals.2023.101694] [PMID]
16. Homme P, Easterday B. Avian influenza virus infections. I. Characteristics of influenza A/Turkey/Wisconsin/1966 virus. Avian diseases. 1970:66-74. [DOI:10.2307/1588557] [PMID]
17. Kumar M, Chu H-J, Rodenberg J, Krauss S, Webster RG. Association of serologic and protective responses of avian influenza vaccines in chickens. Avian diseases. 2007;51(s1):481-3. [DOI:10.1637/7605-041706R1.1] [PMID]
18. Sun Y, Pu J, Fan L, Sun H, Wang J, Zhang Y, et al. Evaluation of the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 influenza viruses in chickens. Veterinary microbiology. 2012;156(1-2):193-9. [DOI:10.1016/j.vetmic.2011.10.003] [PMID]
19. Lee D-H, Park J-K, Lee Y-N, Song J-M, Kang S-M, Lee J-B, et al. H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals. Vaccine. 2011;29(23):4003-7. [DOI:10.1016/j.vaccine.2011.03.067] [PMID] []
20. Swayne DE, Pantin-Jackwood M. Pathobiology of avian influenza virus infections in birds and mammals. Avian influenza. 2008;28(1):87-122. [DOI:10.1002/9780813818634.ch5]
21. Cui H, de Jong MC, Beerens N, van Oers MM, Teng Q, Li L, et al. Vaccination with inactivated virus against low pathogenic avian influenza subtype H9N2 does not prevent virus transmission in chickens. Journal of Virus Eradication. 2021;7(3):100055. [DOI:10.1016/j.jve.2021.100055] [PMID] []
22. Van der Goot J, Koch G, De Jong M, Van Boven M. Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. Proceedings of the National Academy of Sciences. 2005;102(50):18141-6. [DOI:10.1073/pnas.0505098102] [PMID] []
23. Amer M, Hammouda A, Amin AH, El-Bayomi KM, Nasr S. Comparative study on immunogenicity of commercially available inactivated oil adjuvant avian influenza H5N1 and H5N2 vaccines in broiler chicks. Glob Vet. 2012;8:618-24.
24. De Vriese J, Steensels M, Palya V, Gardin Y, Dorsey KM, Lambrecht B, et al. Passive protection afforded by maternally-derived antibodies in chickens and the antibodies' interference with the protection elicited by avian influenza-inactivated vaccines in progeny. Avian diseases. 2010;54(s1):246-52. [DOI:10.1637/8908-043009-Reg.1] [PMID]
25. Maas R, Rosema S, Van Zoelen D, Venema S. Maternal immunity against avian influenza H5N1 in chickens: limited protection and interference with vaccine efficacy. Avian Pathology. 2011;40(1):87-92. [DOI:10.1080/03079457.2010.541226] [PMID]
26. Ka-Oud H, Zakia M, Kamel MM. Evaluation of the immune response in AI vaccinated broiler chickens: effect of biosecurity faults on immune response. Int J Poult Sci. 2008;7(4):390-6. [DOI:10.3923/ijps.2008.390.396]
27. Abdelwhab E, Grund C, Aly MM, Beer M, Harder TC, Hafez HM. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1. Veterinary microbiology. 2012;155(1):13-20. [DOI:10.1016/j.vetmic.2011.08.004] [PMID]
28. Zhao J, Yang H, Xu H, Ma Z, Zhang G. Efficacy of an inactivated bivalent vaccine against the prevalent strains of Newcastle disease and H9N2 avian influenza. Virology Journal. 2017;14:1-8. [DOI:10.1186/s12985-017-0723-7] [PMID] []
29. Swayne D, Suarez D, Schultz-Cherry S, Tumpey T, King D, Nakaya T, et al. Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease. Avian diseases. 2003;47(s3):1047-50. [DOI:10.1637/0005-2086-47.s3.1047] [PMID]
30. Lee D-H, Kwon J-S, Lee H-J, Lee Y-N, Hur W, Hong Y-H, et al. Inactivated H9N2 avian influenza virus vaccine with gel-primed and mineral oil-boosted regimen could produce improved immune response in broiler breeders. Poultry science. 2011;90(5):1020-2. [DOI:10.3382/ps.2010-01258] [PMID]
31. Astill J, Alkie T, Yitbarek A, Taha-Abdelaziz K, Bavananthasivam J, Nagy É, et al. Examination of the effects of virus inactivation methods on the induction of antibody-and cell-mediated immune responses against whole inactivated H9N2 avian influenza virus vaccines in chickens. Vaccine. 2018;36(27):3908-16. [DOI:10.1016/j.vaccine.2018.05.093] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Poultry Sciences and Avian Diseases

Designed & Developed by : Yektaweb