Volume 1, Issue 3 (9-2023)                   JPSAD 2023, 1(3): 42-50 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdavi K, Zendehdel M, Zarei H. Central regulation of appetite in birds: Recent advances and future perspective. JPSAD 2023; 1 (3) :42-50
URL: http://jpsad.ir/article-1-50-en.html
1- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
2- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran , zendedel@ut.ac.ir
3- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:   (243 Views)
Understanding the mechanism of food intake is important for comprehending energy balance, obesity, and the body weight regulation. In particular, examining birds' appetite is critical for conservation efforts, managing human-bird interactions, and understanding the environmental implications of bird feeding practices. In this systematic review, using the PRISMA guideline, we investigated the mediators that were identified as factors affecting the birds' appetite in 2022 and 2023. In order to obtain the appropriate studies, suitable keywords were searched in the relevant electronic databases and an anthology of the desired articles was done. According to the findings, the central administration of adrenomedullin, apelin-13, lipopolysaccharide, neuromedins and spexin causes hypophagia in chickens, while the injection of adiponectin, neuropeptide W (NPW) and phonexin-14 increased the food intake of birds. Also, regarding the members of RF-amide peptide family, neuropeptide VF (NPVF) and neuropeptide FF (NPFF) weakened the food consumption of birds, while kisspeptin and prolactin-releasing peptide (PrRP) strengthened it. The effects observed in birds were similar to mammals in most cases, indicating the structural and general similarities in the regulatory mechanisms of these strains, on the other hand, the contradictory effects between the two species were probably caused by genetic differences. Finally, despite the progress made in identifying the factors and mechanisms involved in regulating the appetite of birds, it is recommended to conduct future studies using modern laboratory methods, especially cellular-molecular methods.
Full-Text [PDF 382 kb]   (93 Downloads)    

Type of Study: Review Paper | Subject: Poultry Sciences
Received: 2023/12/1 | Accepted: 2023/12/1 | Published: 2023/12/7

1. Denbow DM, Cline MA. Food intake regulation. Sturkie's avian physiology: Elsevier; 2015. p. 469-85. [DOI:10.1016/B978-0-12-407160-5.00021-X]
2. Simpson KA, Martin NM, R Bloom S. Hypothalamic regulation of food intake and clinical therapeutic applications. Arquivos Brasileiros de Endocrinologia & Metabologia. 2009;53:120-8. [DOI:10.1590/S0004-27302009000200002] [PMID]
3. Jiang M, Sang X, Hong Z. Beyond nutrients: Food‐derived microRNAs provide cross‐kingdom regulation. Bioessays. 2012;34(4):280-4. [DOI:10.1002/bies.201100181] [PMID]
4. Shojaei M, Yousefi AR, Zendehdel M, Khodadadi M. Food Intake Regulation in Birds: the Role of Neurotransmitters and Hormones. Iranian Journal of Veterinary Medicine. 2020;14(1).
5. Denbow D, Sheppard B. Food and water intake responses of the domestic fowl to norepinephrine infusion at circumscribed neural sites. Brain research bulletin. 1993;31(1-2):121-8. [DOI:10.1016/0361-9230(93)90018-7] [PMID]
6. Zanganeh F, Panahi N, Zendehdel M, Asghari A. Interconnection between Adrenergic and Dopaminergic Systems in Feeding Behavior in Neonatal Chicks. Archives of Razi Institute. 2021;76(2):345.
7. Bungo T, Yanagita K, Shiraishi J. Feed intake after infusion of Noradrenalin, Dopamine or its. J Anim Vet Adv. 2010;9:760-3. [DOI:10.3923/javaa.2010.760.763]
8. Zendehdel M, Hasani K, Babapour V, Mortezaei SS, Khoshbakht Y, Hassanpour S. Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Veterinary research communications. 2014;38:11-9. [DOI:10.1007/s11259-013-9581-y] [PMID]
9. Zendehdel M, Hamidi F, Babapour V, Taghavian F. The effect of intracerebroventricular injection of serotonin, parachlorophenylalanine and reserpine on food and water intake in food-deprived broiler cockerels. 2012.
10. Rahmani B, Mahdavi K, Zendedel Kheybari M, Khodadadi M, Keshavarz M, Shahabi M, Baghbanzadeh A. Role of central opioid receptors on serotonin-Induced hypophagia in the neonatal broilers. Iranian Journal of Veterinary Science and Technology. 2022;14(1):9-19.
11. Abolghasempour S, Zendehdel M, Panahi N, Jahandideh A, Gilanpour H. Intracerebroventricular injection of the glutamatergic receptors antagonist affects N/OFQ-induced hyperphagia in neonatal broilers: role of NMDA and AMPA receptors. International Journal of Peptide Research and Therapeutics. 2019;25:835-43. [DOI:10.1007/s10989-018-9733-6]
12. SHAMSI BZ, MOUSAVI SGR, SHAMSOLLAHI M, CHERAGHI J, TAHERPOUR K. Effects of chlorpheniramine (histamine H1 receptor antagonist) on food and water intake in broiler chickens in hunger and satiety. 2014.
13. Baghbanzadeh A, Babapour V. Glutamate ionotropic and metabotropic receptors affect feed intake in broiler cockerels. 2007.
14. Vazir B, Zendehdel M, Asghari A. Interaction of central glutamatergic and histaminergic systems on food intake regulation in layer chickens. Archives of Razi Institute. 2021;76(3):537.
15. Zendehdel M, Tirgari F, Shohre B, Deldar H, Hassanpour S. Involvement of Gaba and Cannabinoid Receptors in Central Food Intake Regulation in Neonatal Layer Chicks: Role of CB 1 and Gaba a Receptors. Brazilian Journal of Poultry Science. 2017;19:221-30. [DOI:10.1590/1806-9061-2016-0438]
16. Jonaidi H, Babapour V, Denbow D. GABAergic control of food intake in the meat-type chickens. Physiology & behavior. 2002;76(4-5):465-8. [DOI:10.1016/S0031-9384(02)00692-3] [PMID]
17. Rahimi J, Zendehdel M, Khodadadi M. Mediatory role of the dopaminergic system through D1 receptor on glycine-induced hypophagia in neonatal broiler-type chickens. Amino Acids. 2021;53:461-70. [DOI:10.1007/s00726-021-02963-3] [PMID]
18. Ohgushi A, Bungo T, Shimojo M, Masuda Y, Denbow DM, Furuse M. Relationships between feeding and locomotion behaviors after central administration of CRF in chicks. Physiology & behavior. 2001;72(1-2):287-9. [DOI:10.1016/S0031-9384(00)00377-2] [PMID]
19. Raji-Dahmardeh F, Vazir B, Zendehdel M, Asghari A, Panahi N. Interaction between oxytocin and opioidergic system on food intake regulation in neonatal layer type chicken. International Journal of Peptide Research and Therapeutics. 2020;26:1905-12. [DOI:10.1007/s10989-019-09944-x]
20. Honda K, Saneyasu T, Hasegawa S, Kamisoyama H. A comparative study of the central effects of melanocortin peptides on food intake in broiler and layer chicks. Peptides. 2012;37(1):13-7. [DOI:10.1016/j.peptides.2012.06.015] [PMID]
21. Greene ES, Abdelli N, Dridi JS, Dridi S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Veterinary Sciences. 2022;9(4):171. [DOI:10.3390/vetsci9040171] [PMID] []
22. Yousefvand S, Hamidi F, Zendehdel M, Parham A. Interaction of neuropeptide Y receptors (NPY1, NPY2 and NPY5) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken. British Poultry Science. 2019;60(1):71-8. [DOI:10.1080/00071668.2018.1547359] [PMID]
23. Jaefari-Anari M, Zendehdel M, Gilanpour H, Asghari A, Babapour V. Central opioidergic system interplay with histamine on food intake in neonatal chicks: role of µ-opioid and H1/H3 receptors. Brazilian Journal of Poultry Science. 2018;20:595-604. [DOI:10.1590/1806-9061-2018-0785]
24. Mahdavi K, Zendehdel M, Baghbanzadeh A. Central effects of opioidergic system on food intake in birds and mammals: a review. Veterinary Research Communications. 2023:1-12. [DOI:10.1007/s11259-023-10142-w] [PMID]
25. Tachibana T, Takagi T, Tomonaga S, Ohgushi A, Ando R, Denbow DM, Furuse M. Central administration of cocaine-and amphetamine-regulated transcript inhibits food intake in chicks. Neuroscience letters. 2003;337(3):131-4. [DOI:10.1016/S0304-3940(02)01321-6] [PMID]
26. Tachibana T, Mori M, Khan MSI, Ueda H, Sugahara K, Hiramatsu K. Central administration of galanin stimulates feeding behavior in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2008;151(4):637-40. [DOI:10.1016/j.cbpa.2008.08.001] [PMID]
27. Ramser A, Dridi S. Avian Orexin: Feed Intake Regulator or Something Else? Veterinary Sciences. 2022;9(3):112. [DOI:10.3390/vetsci9030112] [PMID] []
28. Bobillo-Perez S, Girona-Alarcon M, Cañizo D, Camprubi-Camprubi M, Rodriguez-Fanjul J, Balaguer M, et al. Mid-regional pro-adrenomedullin for diagnosing evolution after cardiac surgery in newborns: the PRONEW study. European Journal of Pediatrics. 2022:1-12. [DOI:10.1007/s00431-021-04278-7] [PMID]
29. Solé-Ribalta A, Bobillo-Pérez S, Valls A, Girona-Alarcón M, Launes C, Cambra FJ, et al. Diagnostic and prognostic value of procalcitonin and mid-regional pro-adrenomedullin in septic paediatric patients. European journal of pediatrics. 2020;179:1089-96. [DOI:10.1007/s00431-020-03587-7] [PMID]
30. Geven C, Pickkers P. The mechanism of action of the adrenomedullin-binding antibody adrecizumab. Critical care. 2018;22(1):1-2. [DOI:10.1186/s13054-018-2074-1] [PMID] []
31. Bech EM, Voldum-Clausen K, Pedersen SL, Fabricius K, Rudkjær LC, Hansen HH, Jelsing J. Adrenomedullin and glucagon-like peptide-1 have additive effects on food intake in mice. Biomedicine & Pharmacotherapy. 2019;109:167-73. [DOI:10.1016/j.biopha.2018.10.040] [PMID]
32. Zhang H, Zhang S, Jiang C, Li Y, Xu G, Xu M, Wang X. Intermedin/adrenomedullin 2 polypeptide promotes adipose tissue browning and reduces high-fat diet-induced obesity and insulin resistance in mice. International Journal of Obesity. 2016;40(5):852-60. [DOI:10.1038/ijo.2016.2] [PMID]
33. Zahed MS, Alimohammadi S, Hassanpour S. Effect of Intracerebroventricular (ICV) Injection of Adrenomedullin and its Interaction with NPY and CCK Pathways on Food Intake Regulation in Neonatal Layer-Type Chick. Available at SSRN 4501661.
34. Yamauchi T, Kamon J, Minokoshi Ya, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine. 2002;8(11):1288-95. [DOI:10.1038/nm788] [PMID]
35. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of clinical investigation. 2006;116(7):1784-92. [DOI:10.1172/JCI29126] [PMID] []
36. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell metabolism. 2007;6(1):55-68. [DOI:10.1016/j.cmet.2007.06.003] [PMID]
37. Madadi S, Hasasnpour S, Zendehdel M, Vazir B, Jahandideh A. Role of central adiponectin and its interactions with NPY and GABAergic systems on food intake in neonatal layer chicken. Neuroscience Letters. 2023;808:137283. [DOI:10.1016/j.neulet.2023.137283] [PMID]
38. Tan Y, Xu X, Cao H, Mao H, Yin Z. RFamide-related peptides' gene expression, polymorphism, and their association with reproductive traits in chickens. Poultry Science. 2021;100(2):488-95. [DOI:10.1016/j.psj.2020.11.024] [PMID] []
39. Gospodarska E, Kozak LP, Jaroslawska J. Isolation and identification of endogenous RFamide‐related peptides 1 and 3 in the mouse hypothalamus. Journal of neuroendocrinology. 2019;31(1):e12668. [DOI:10.1111/jne.12668] [PMID]
40. Takayanagi Y, Onaka T. Roles of prolactin‐releasing peptide and RFamide related peptides in the control of stress and food intake. The FEBS journal. 2010;277(24):4998-5005. [DOI:10.1111/j.1742-4658.2010.07932.x] [PMID]
41. Moosadoost Y, Zendehdel M, Khodadadi M. The effect of rfamide-related peptide-3 (RFRP-3 or NPVF) on food intake in neonatal chickens: the role of MC3/MC4 and CRF 1/CRF 2 receptors. International Journal of Peptide Research and Therapeutics. 2021;27:253-62. [DOI:10.1007/s10989-020-10081-z]
42. Hamidi B, Zendehdel M, Vazir B, Asghari A. The effect of the central administration of the Neuropeptide VF on feed intake and its possible interactions with glutamate and opioid systems in broiler chicken. International Journal of Peptide Research and Therapeutics. 2022;28(3):101. [DOI:10.1007/s10989-022-10407-z]
43. Moosadoost Y, Zendehdel M, Khodadadi M. Modulatory role of neuropeptide FF receptor on hypophagy through melanocortin system in neonatal meat-type chickens. Iranian Journal of Physiology and Pharmacology. 2019;3(3):223-14.
44. Tachibana T, Saito S, Tomonaga S, Takagi T, Saito E-S, Nakanishi T, et al. Effect of central administration of prolactin-releasing peptide on feeding in chicks. Physiology & behavior. 2004;80(5):713-9. [DOI:10.1016/j.physbeh.2003.12.005] [PMID]
45. Kord A, Vazir B, Zendedel Kheybari M, Babapour V, Asghari A. Interaction of central kisspeptin with melanocortin, GABAergic, corticotrophin, and NPY systems on food intake in chickens. Iranian Journal of Veterinary Science and Technology. 2022;14(2):19-28.
46. Fan X, Zhou N, Zhang X, Mukhtar M, Lu Z, Fang J, et al. Structural and functional study of the apelin-13 peptide, an endogenous ligand of the HIV-1 coreceptor, APJ. Biochemistry. 2003;42(34):10163-8. [DOI:10.1021/bi030049s] [PMID]
47. Saral S, Alkanat M, Sumer A, Canpolat S. Apelin-13 increased food intake with serum ghrelin and leptin levels in male rats. Bratislavske Lekarske Listy. 2018;119(1):47-53. [DOI:10.4149/BLL_2018_010] [PMID]
48. Valle A, Hoggard N, Adams A, Roca P, Speakman J. Chronic central administration of apelin‐13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice. Journal of neuroendocrinology. 2008;20(1):79-84. [DOI:10.1111/j.1365-2826.2007.01617.x] [PMID]
49. Sunter D, Hewson AK, Dickson SL. Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neuroscience letters. 2003;353(1):1-4. [DOI:10.1016/S0304-3940(03)00351-3] [PMID]
50. Lv S-Y, Yang Y-J, Qin Y-J, Mo J-R, Wang N-B, Wang Y-J, Chen Q. Central apelin-13 inhibits food intake via the CRF receptor in mice. Peptides. 2012;33(1):132-8. [DOI:10.1016/j.peptides.2011.11.011] [PMID]
51. Zadeh RA, Jonaidi H, Mahani SE, Salehi M, Bakhsh ME, editors. Effects of intracerebroventricular injection of apelin-13 on food intake in broiler chicks. Veterinary Research Forum; 2023: Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
52. Safikhani A, Zendehdel M, Khodadadi M, Rahmani B, Ghashghayi E, Mahdavi K. Hypophagia induced by intracerebroventricular injection of apelin-13 is mediated via CRF1/CRF2 and MC3/MC4 receptors in neonatal broiler chicken. Behavioural Brain Research. 2023:114536. [DOI:10.1016/j.bbr.2023.114536] [PMID]
53. Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458(7242):1191-5. [DOI:10.1038/nature07830] [PMID]
54. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Scientific reports. 2019;9(1):5790. [DOI:10.1038/s41598-019-42286-8] [PMID] []
55. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. International journal of molecular sciences. 2019;20(9):2293. [DOI:10.3390/ijms20092293] [PMID] []
56. Borner T, Pinkernell S, Lutz TA, Riediger T. Lipopolysaccharide inhibits ghrelin-excited neurons of the arcuate nucleus and reduces food intake via central nitric oxide signaling. Brain, behavior, and immunity. 2012;26(6):867-79. [DOI:10.1016/j.bbi.2012.03.005] [PMID]
57. Chaskiel L, Paul F, Gerstberger R, Hübschle T, Konsman JP. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration. Neuropharmacology. 2016;107:146-59. [DOI:10.1016/j.neuropharm.2016.03.030] [PMID]
58. Zendehdel M, Baghbanzadeh A, Aghelkohan P, Hassanpour S. Lipopolysaccharide and histaminergic systems interact to mediate food intake in broilers. Br Poult Sci http://dx doi org/101080/000716682015. 2015;1099613. [DOI:10.1080/00071668.2015.1099613] [PMID]
59. Yousefi M, Jonaidi H, Sadeghi B. Influence of peripheral lipopolysaccharide (LPS) on feed intake, body temperature and hypothalamic expression of neuropeptides involved in appetite regulation in broilers and layer chicks. British Poultry Science. 2021;62(1):110-7. [DOI:10.1080/00071668.2020.1813254] [PMID]
60. Tachibana T, Kodama T, Yamane S, Makino R, Khan S, Cline M. Possible role of central interleukins on the anorexigenic effect of lipopolysaccharide in chicks. British Poultry Science. 2017;58(3):305-11. [DOI:10.1080/00071668.2017.1280774] [PMID]
61. Ghiasi S, Zendehdel M, Haghbinnazarpak H, Asghari A, Sheikhi N. Central and Peripheral Effects of Lipopolysaccharide on Food Choice and Macronutrient Selection in Meat-Type Chick. Archives of Razi Institute. 2023;78(3):869-77.
62. Gajjar S, Patel BM. Neuromedin: An insight into its types, receptors and therapeutic opportunities. Pharmacological Reports. 2017;69(3):438-47. [DOI:10.1016/j.pharep.2017.01.009] [PMID]
63. Brighton PJ, Szekeres PG, Willars GB. Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacological reviews. 2004;56(2):231-48. [DOI:10.1124/pr.56.2.3] [PMID]
64. Kamisoyama H, Honda K, Saneyasu T, Sugahara K, Hasegawa S. Central administration of neuromedin U suppresses food intake in chicks. Neuroscience letters. 2007;420(1):1-5. [DOI:10.1016/j.neulet.2007.03.062] [PMID]
65. Shousha S, Nakahara K, Miyazato M, Kangawa K, Murakami N. Endogenous neuromedin U has anorectic effects in the Japanese quail. General and comparative endocrinology. 2005;140(3):156-63. [DOI:10.1016/j.ygcen.2004.11.002] [PMID]
66. Ghashghayi E, Zendehdel M, Khodadadi M, Rahmani B. Central dopaminergic, serotoninergic, as well as GABAergic systems mediate NMU-induced hypophagia in newborn chicken. International Journal of Neuroscience. 2022:1-11. [DOI:10.1080/00207454.2022.2102980] [PMID]
67. Tachibana T, Matsuda K, Khan MSI, Ueda H, Cline MA. Feeding and drinking response following central administration of neuromedin S in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2010;157(1):63-7. [DOI:10.1016/j.cbpa.2010.04.020] [PMID]
68. Ahmadabadi KG, Zendehdel M, Vazir B, Asghari A, Babapour V. Possible effects of the central adrenergic and dopaminergic receptors on hypophagia induced by neuromedin S in neonatal layer-type chicks. General and Comparative Endocrinology. 2022;321:114032. [DOI:10.1016/j.ygcen.2022.114032] [PMID]
69. Tachibana T, Matsuda K, Khan SI, Ueda H, Cline MA. Feeding and drinking response following central administrations of bombesin-like peptides in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2010;156(4):394-9. [DOI:10.1016/j.cbpa.2010.03.008] [PMID]
70. Takenoya F, Kageyama H, Hirako S, Ota E, Wada N, Ryushi T, Shioda S. Neuropeptide w. Frontiers in Endocrinology. 2012;3:171. [DOI:10.3389/fendo.2012.00171] [PMID] []
71. Takenoya F, Kageyama H, Shiba K, Date Y, Nakazato M, Shioda S. Neuropeptide W: a key player in the homeostatic regulation of feeding and energy metabolism? Annals of the New York Academy of Sciences. 2010;1200(1):162-9. [DOI:10.1111/j.1749-6632.2010.05642.x] [PMID]
72. Ishii M, Fei H, Friedman JM. Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. Proceedings of the National Academy of Sciences. 2003;100(18):10540-5. [DOI:10.1073/pnas.1334189100] [PMID] []
73. Shimomura Y, Harada M, Goto M, Sugo T, Matsumoto Y, Abe M, et al. Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. Journal of Biological Chemistry. 2002;277(39):35826-32. [DOI:10.1074/jbc.M205337200] [PMID]
74. Levine AS, Winsky-Sommerer R, Huitron-Resendiz S, Grace MK, De Lecea L. Injection of neuropeptide W into paraventricular nucleus of hypothalamus increases food intake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2005;288(6):R1727-R32. [DOI:10.1152/ajpregu.00638.2003] [PMID]
75. Mondal MS, Yamaguchi H, Date Y, Shimbara T, Toshinai K, Shimomura Y, et al. A role for neuropeptide W in the regulation of feeding behavior. Endocrinology. 2003;144(11):4729-33. [DOI:10.1210/en.2003-0536] [PMID]
76. Mahdavi K, Zendehdel M, Baghbanzadeh A. The effects of neuropeptide W on food consumption and feeding behavior in neonatal meat-type chicks: Role of CRF1/CRF2 and NPY1 receptors. Neuroscience Letters. 2023;817:137531. [DOI:10.1016/j.neulet.2023.137531] [PMID]
77. Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Frontiers in Molecular Biosciences. 2022;9:956500. [DOI:10.3389/fmolb.2022.956500] [PMID] []
78. Ak TP, Yaman M, Bayrakdar A, Bulmus O. Expression of phoenixin-14 and nesfatin-1 in the hypothalamo-pituitary-gonadal axis in the phases of the estrous cycle. Neuropeptides. 2023;97:102299. [DOI:10.1016/j.npep.2022.102299] [PMID]
79. Schalla M, Prinz P, Friedrich T, Scharner S, Kobelt P, Goebel-Stengel M, et al. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides. 2017;96:53-60. [DOI:10.1016/j.peptides.2017.08.004] [PMID]
80. Rajaei S, Zendehdel M, Rahnema M, Hassanpour S, Asle-Rousta M. Mediatory role of the central NPY, melanocortine and corticotrophin systems on phoenixin-14 induced hyperphagia in neonatal chicken. General and comparative endocrinology. 2022;315:113930. [DOI:10.1016/j.ygcen.2021.113930] [PMID]
81. Porzionato A, Rucinski M, Macchi V, Stecco C, Malendowicz LK, De Caro R. Spexin expression in normal rat tissues. Journal of Histochemistry & Cytochemistry. 2010;58(9):825-37. [DOI:10.1369/jhc.2010.956300] [PMID] []
82. Tran A, He W, Chen JT, Belsham DD. Spexin: Its role, regulation, and therapeutic potential in the hypothalamus. Pharmacology & therapeutics. 2022;233:108033. [DOI:10.1016/j.pharmthera.2021.108033] [PMID]
83. Lv S, Zhou Y, Feng Y, Zhang X, Wang X, Yang Y, Wang X. Peripheral spexin inhibited food intake in mice. International Journal of Endocrinology. 2020;2020. [DOI:10.1155/2020/4913785] [PMID] []
84. Jeong B, Kim K-K, Lee T-H, Kim H-R, Park B-S, Park J-W, et al. Spexin Regulates hypothalamic leptin action on feeding behavior. Biomolecules. 2022;12(2):236. [DOI:10.3390/biom12020236] [PMID] []
85. Farzin M, Hassanpour S, Zendehdel M, Vazir B, Asghari A. Effects of intracerebroventricular injection of spexin and its interaction with NPY, GalR2 and GalR3 receptors on the central food intake regulation and nutritional behavior in broiler chickens. Neuroscience Letters. 2022;777:136589. [DOI:10.1016/j.neulet.2022.136589] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Poultry Sciences and Avian Diseases

Designed & Developed by : Yektaweb